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Non-uniform multivariate subdivision schemes are constructed, which generate
limit functions interpolating some of the initial control points. Our schemes differ
from the known interpolatory subdivision schemes, in that only some of the
original control points are interpolated, and not the control points in every level.
These new schemes are combinations of a non-interpolatory schemes with different
local schemes near some of the original control points. They generate smooth sur-
faces interpolating given points, using stencils of small support. Next, it is shown
how to modify known subdivision schemes so that the limit surfaces generated by
them interpolate given normal vectors at given interpolation points. � 2000
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1. INTRODUCTION

Subdivision schemes have been studied extensively, as a tool for
curve�surface design [1, 3, 5]

Interpolatory subdivision schemes are constructed and analyzed in [4, 6,
9] and are of great interest, since every control point generated by such a
subdivision process, lies on the limit surface, which is very intuitive to the
designer. However, the basis functions generated by applying interpolatory
subdivision schemes to the Kronecker initial data, exhibit bad behavior,
such as an infinite number of inflection points! Moreover, experience shows
that the stencils of interpolatory subdivision schemes, have large support
with respect to the smoothness of their limit functions.

In this paper, we construct new non-uniform subdivision schemes, that
generate limit surfaces interpolating some of the original control points
only. This is done by applying a non-interpolatory subdivision scheme
almost everywhere, except for areas around special control points, where
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another local stencil is used. Our schemes use simpler stencils of smaller
support and increased smoothness, in comparison with interpolatory sub-
division schemes. For the simplicity of the analysis, we construct schemes
that interpolate only the control point at the origin. The same local
schemes that work near the origin, can be used in the neighborhood of any
initial control point, providing the interpolation property to initial control
points.

Section 2 gives the notations and background on subdivision schemes.
Section 3 defines finitely non-uniform subdivision schemes and presents a
construction of such schemes. An example for this construction is given in
Section 4. Section 5 provides a sufficient condition for the limit surfaces to
be Cm for a given finitely non-uniform scheme. In Section 6 we use this suf-
ficient condition to construct families of C2 finitely non-uniform schemes.
In Section 7 we present a method for the construction of finitely non-
uniform schemes that can also interpolate given normal vectors. Section 8
depicts some surfaces that were generated by our schemes.

2. SUBDIVISION SCHEMES

Given X/Zs, let l(X ) denote all the functions P: X � R, let l� (X )
denote the Banach space of all the functions P: X � R such that
&P&�<�, where &P&� is the supremum of |P| on X. Let l0 (X )/l� (X )
denote the space of all the functions P # l� (X) with finite support.

A subdivision operator is a linear operator S: l(Zs) � l(Zs) which is
based on a mask a # l0 (Zs) and is defined by

(SP)(:)= :
; # Zs

a(:&2;) P(;), \: # Zs. (1)

S is also referred to as a subdivision scheme, when it is repeatedly applied
to data from l(Zs). S is called an interpolatory scheme, if

(SP)(2:)=P(:), \: # Zs, \P # l(Zs). (2)

A subdivision scheme S is termed uniformly convergent, if for every
P # l0 (Zs), there exists a compactly supported function F # C(Rs) (called
the limit function) such that

lim
n � �

&SnP&F(2&n } )&�, Zs=0. (3)

We denote S�P=F. It follows from (3) that

S�SP( } )=S�P(}2). (4)
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Specifically, we denote 8=S�$0 where $0 (:) attains the value 1 for :=0,
and 0 otherwise. 8 is called the S-refinable function. The limit function
S�P can be expressed as a sum of integer translates of 8

S�P= :
: # Zs

P(:) 8( } &:)= :
: # Zs

SkP(:) 8(2k } &:), k�0. (5)

We say that S reproduces the polynomial p # ?m, if

S( p |Zs)(2 } )= p |Zs , (6)

where ?m is the space of polynomials of degree �m. Throughout the paper
we use the standard multi-index notations for Zs,

:=(:1 , ..., :s) # Zs, :�0 if :1 , ..., :s�0, |:|= :
s

i=1

:i , x:=x:1
1 } } } } } x:s

s ,

:!=:1! } } } } } :s !, D:=
� |:|

�:1x1 } } } �:sxs
.

3. A METHOD FOR CONSTRUCTING FINITELY NON-UNIFORM
INTERPOLATING SCHEMES

In this section, we show that for a large family of subdivision schemes S,
it is easy to construct a non-uniform scheme S� that coincides with S away
from the origin, has the interpolatory property at the origin, and generates
limit functions from the same shift invariant space of functions generated
by S.

Definition. A linear operator S� : l(Zs) � l(Zs) is called a finitely non
uniform subdivision operator if there exists a subdivision operator S and a
finite set T/Zs such that the support of (S� &S) P is contained in T for all
P # l(Zs), and such that P |T=0 O S� P |T=0 for all P.

In other words, a finitely non-uniform subdivision operator differs from
a uniform subdivision operator only on a finite set T, and the values of S� P
in T depend only on the values of P in T. We also refer to S� as a finitely
non-uniform subdivision scheme.

Given a subdivision scheme S with a basis function 8 satisfying
8(0){0, we define an operator L: l(Zs) � l(Zs) by

LP(:)={P(:),
S�P(0),

:{0,
:=0.

(7)
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L is invertible since 8(0){0:

L&1Q(:)={
Q(:), :{0,

(8)
(Q(0)& :

;{0

Q(;) 8(&;)) 8(0)&1, :=0.

Let S� =LSL&1. We will now show that the limit functions generated by S�
belong to the same shift-invariant space of functions generated by S. Let
P0=P, Q0=L&1P, and define

Pn+1=S� Pn, n>0, (9)

Qn+1=SQn, n>0. (10)

Then

Pn=LQn, n�0. (11)

Thus Pn coincides with Qn everywhere except for the origin. Moreover, we
have Pn (0)=P(0) for all n�0, since (4) yields

Pn+1 (0)=LQn+1 (0)=S �Qn+1 (0)=S�SQn (0)

=S�Qn (0)=LQn (0)=Pn (0). (12)

Let F=S�Q0, then

lim
n � �

&Qn&F(2&n } )&�, Zs=0. (13)

Because F(0)=P(0), and Pn (:)=Qn (:) for :{0, we get from (13) that

lim
n � �

&Pn&F(2&n } )&�, Zs=0, (14)

showing that the subdivision scheme S� is uniformly convergent. The
smoothness of its limit functions, is the same as the smoothness of the limit
functions generated by S.

The structure of S� is simple: It operates exactly like S everywhere, except
on a finite neighborhood of the origin, whose size is determined by the sup-
port of 8. In particular (12) means that S� does not change the value of its
operand at the origin, which provides the interpolation property.
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4. A FINITELY NON-UNIFORM C2 INTERPOLATING SCHEME
FROM A BOX-SPLINE SCHEME

A 3 directional box-spline with multiplicities 2 is generated by the sub-
division scheme S defined by the following mask supported on [&2, ..., 2]2

0 0 116 18 116

0 18 38 38 18

a=_116 38 58 38 116& . (15)

18 38 38 18 0

116 18 116 0 0

It can be shown that S generates C2 limit surfaces [2]. The extension of
this subdivision scheme to general triangulations is also known as Loop's
scheme [8]. Using the method in section 3, we construct from the scheme
S a finitely non-uniform interpolating C2 scheme. It is easy to see that

LP(0)=LP(0, 0)=S �P(0)=12P(0, 0)+112P(1, 0)+112P(1, 1)

+112P(0, 1)+112P(&1, 0)+112P(&1, &1)+112P(0, &1).

(16)

Therefore

L&1P(0)=2P(0, 0)&16P(1, 0)&16P(1, 1)

&16P(0, 1)&16P(&1, 0)&16P(&1, &1)&16P(0, &1). (17)

We represent L and L&1 at the origin by the two stencils shown in Fig. 1.

FIG. 1. (a) A stencil representing L at the origin, (b) a stencil representing L&1 at the
origin.
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An implementation of the scheme S� =LSL&1 can be done by first apply-
ing L&1, then S, and then set the value at the origin to its original value,
which corresponds to an application of L. Both L&1 and S consist of ``one-
ring'' stencils, i.e. new controls points depend on first-order neighbors only.
However, S� is a ``two-ring'' scheme, i.e. a new control point depends on
second-order neighbors. We aim to construct ``one-ring'' stencils knowing
that the locality of a scheme affects significantly the complexity of the
computations involved in it.

5. CONDITIONS FOR CONVERGENCE AND SMOOTHNESS OF
THE LIMIT FUNCTIONS

Given a finitely non-uniform subdivision scheme S� , we formulate condi-
tions for S� to converge and for its limit functions to be Cm. First, here are
some notations and definitions for finitely non-uniform schemes.

Let T/Zs denote a finite set that contains the origin. Let MT denote a
square matrix representing a linear operator MT : RT � RT. Let S denote a
uniform subdivision scheme that is known to generate limit functions in
Cm (Rs). A finitely non-uniform operator S� has the form

S� P(:)={MTP |T (:)
SP(:),

: # T,
: � T,

\P. (18)

We call the matrix MT a refinement matrix, as it represents the operation
of S� on the refinement set T. Let P0=P # l(Zs) denote initial control points,
and define the subdivision scheme by

Pn+1=S� Pn, n�0. (19)

We say that the scheme S� converges uniformly to a limit function F over
the open set D/Rs if

lim
n � �

&Pn&F(2&n } )&�, Zs & 2nD=0. (20)

We denote that limit function S� �P. For every x # Rs"[0], the scheme S�
coincides with S in the neighborhood of 2nx when n is big enough, there-
fore the limit function is well defined everywhere except maybe at the
origin. In particular, far away from the origin, only the scheme S operates.
Therefore, there exists an open and bounded set 3/Rs that contains the
origin, with the property that

x # Rs"3 O S� �P(x)=S�P(x)= :
: # Zs"[0]

P(:) 8(x&:), \P. (21)
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Due to the locality of S, T can be enlarged (and MT modified accordingly)
without changing the operator S� , so that (5.1) remains valid, and so that
the values of S�P inside 23"3 depend only on values of P in T"[0].
Therefore, together with (5.4) this yields

x # 23"3 O S� �P(x)= :
: # T"[0]

P(:) 8(x&:), \P, \n�0, (22)

Observing that

S� �P=S� �Pn (2n } ), \P, (23)

we get that

x # 2&n+13"2&n3 O S� �P(x)= :
: # T"[0]

Pn (:) 8(2nx&:). (24)

For every P, and for every n�0. A sufficient condition for the convergence
of Pn to a continuous limit function is provided by

Theorem 1. If MT has a simple eigenvalue 1 with the corresponding
eigenvector (1, ..., 1), and all the other eigenvalues of modulus less than 1,
than S� nP converges to a continuous limit function, for all P. The value of the
limit function at the origin is the Euclidean inner product (w, P |T) where w
is the eigenvector of M t

T with eigenvalue 1, normalized such that its coor-
dinates sum up to 1.

Proof. From the assumption that S is uniformly convergent, we know
that it reproduces constants [1]. By the conditions of the theorem, we
deduce that S� also reproduces constants. It is known that for any 0<\<1
that has modulus greater than the second eigenvalue of MT ,

M n
T P |T=(w, P |T)(1, ..., 1)+o(\n), n � �. (25)

Let

Q(:)=P(:)&(w, P |T), : # Zs. (26)

We already know that S� n (P&Q) converges to the constant function with
constant value (w, P |T). We also know from (25) and (26) that

M n
T Q |T=o(\n), n � �. (27)

We only have to show that S� nQ converge to a continuous function with
value 0 at the origin. From (24) and (27) we get that

x # 2&n+13"2&n3 O S� �Q(x)�C\n, (28)
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therefore

S� �Q(x)=o(&x&#), #=&
log(\)
log(2)

>0. K (29)

Next, we refine the analysis of the eigenproperties in Theorem 1 to
guarantee the smoothness of the limit functions S� �P. In particular the
scheme S� is now required to have polynomial reproduction properties.
While Cm schemes always send the space of polynomials up to degree m
into itself, non-interpolatory Cm schemes do not generally reproduce all the
polynomials of degree m, in the sense defined by (6). However, we make
use of the fact that some interesting schemes reproduce a subspace of poly-
nomials of degree �m (see Section 6).

Theorem 2. Assume that every eigenvalue of MT that has modulus
�2&m is equal 2&r for some integer 0�r�m, and that its algebraic multi-
plicity is the same as its geometric multiplicity. If every eigenvector that
corresponds to the eigenvalue 2&r with 0�r�m has the form p |T where p is
a homogeneous polynomial of degree r that is reproduced by S, then S�
generates Cm limit functions for every initial data.

Proof. Let *1 , ..., *k denote the eigenvalues of MT with modulus �2&m,
and let v1 , ..., vk denote the corresponding eigenvectors. From the condi-
tions of the theorem, there exist p1 , ..., pk # ?m

0 such that

vi= pi |T
, i=1, ..., k, (30)

where ?m
0 denotes the set of homogeneous polynomials of degree �m. For

each initial data P, P |T can be expanded in terms of the generalized eigen-
values of MT . If we take a1 , ..., ak to be the coefficients of v1 , ..., vk in that
expansion, then there exists 0<\<2&m such that

M n
T P |T= :

k

i=1

ai*n
i vi+o(\n), n>0. (31)

Define Q by

Q=P&\ :
k

i=1

ai pi+ |Zs
. (32)
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We know from the polynomial reproduction condition of the theorem that

S� � (P&Q)= :
k

i=1

aip i # ?m (Rs). (33)

Since by (24), S �P # Cm (Rs"[0]) for all P, we only need to show that

D jS� �Q(x) � 0 as x � 0, \P, \0�| j |�m. (34)

From (31) and (32), we get

M n
T Q |T=o(\n), n>0, (35)

and from (24) we have

x # 2&n+13"2&n3 O D jS� �Q(x)

= :
: # T"[0]

M n
T Q |T (:) 2n | j | D j8(2nx&:), \P, \0�| j |�m (36)

therefore

D jS� �Q(x)=o(&x&#), (37)

for all P, and 0�| j |�m, where #=&log(2 | j |\) log(2)>0. K

The following corollary can be used to calculate the first order partial
derivatives of the limit function at the origin, and specifically to establish
the regularity of limit surfaces in case s=2.

Corollary 3. If the conditions of Theorem 2 are fulfilled with m=1,
and MT has the eigenvalue *=12 with exact algebraic and geometric multi-
plicity s, then there exist linearly independent vectors w1 , ..., ws # RT such
that

DeiS� �P(0)=(wi , P |T), \P, (38)

where [ei] i=1, ..., s is the standard basis of Rs. The vectors wi are in the sub-
space [v # RT | M t

T v=12v], and they are a biorthogonal basis to the basis
[( } )

ei
|T] i=1, ..., s .
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Proof. Following the lines of the proof of Theorem 2, we know from
the conditions of the theorem that there exist linearly independent
w1 , ..., ws (which are eigenvectors of M t

T corresponding to the eigenvalue
12) and 0<\<12 such that

M n
T P |T= :

s

i=1

ai (12)n pi |T
+ p0 |T

+O(\n), (39)

where ai=(wi , P |T) and p i ( } )=( } )ei, i=1, ..., s denote linear mono-
mials, and p0 # ?0. Define Q by

Q=P&\ :
s

i=1

aipi+ |Zs
. (40)

Then using (33) and (34) we get

DeiS� �P(0)=(wi , P |T), i=1, ..., s. K (41)

In Section 7 we make use of schemes that satisfy the condition of
Corollary 4, to prescribe normal vectors of the limit surfaces.

Corollary 4. If the conditions of Theorem 2 are fulfilled with m=1,
and MT does not have 12 as an eigenvalue, then the gradient of S� �P at the
origin is zero, for all P.

Theorem 2 can be used to construct schemes whose limit functions are
in Cm. Another class of functions which are also of interest, contains the
functions that are in Cm&1 with bounded derivatives of order m. For
example, in Computer Aided Machining (CAM) surfaces are required to be
smooth, or at least piecewise smooth, but the curvature of the surfaces does
not have to be continuous. In order to enable machining, the surfaces must
have only bounded curvature. A weaker version of Theorem 2 provides the
corresponding sufficient condition:

Theorem 5. Assume that every eigenvalue of MT that has modulus
�2&m is equal 2&r for some integer 0�r�m, and that its algebraic multi-
plicity is the same as its geometric multiplicity. If every eigenvalue corre-
sponding to the eigenvector 2&r, with 0�r<m has the form p |T where p is
a homogeneous polynomial of degree r that is reproduced by S, then S�
generates Cm&1 limit functions, which are Cm everywhere except at the
origin, and whose derivatives of order m are bounded in the neighborhood of
the origin for every initial data.
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The above conditions are weaker than the conditions of Theorem 2,
since they allow eigenvalues of modulus 2&m other than *=2&m, and
corresponding eigenvectors that are not polynomials restricted to T.

Proof. Following the proof of Theorem 2, we only have to prove that
the mth order derivatives of the function S� �P are bounded in the
neighborhood of the origin, when P |T is an eigenvector of MT with eigen-
value of modulus 2&m. Let j=( j1 , ..., js) with | j |=m. From (24) we have

x # 2&n+13"2&n3 O D jS� �P(x)

= :
: # T"[0]

M n
T P |T (:) 2mn D j8(2nx&:). (42)

But

|2mnM n
T P |T (:)|=|P(:)|, \: # T, (43)

therefore,

x # 2&n+13"2&n3 O |D jS� �P(x)|� :
: # T"[0]

|P(:)| D j8(2nx&:). (44)

Finally we get

&D jS� �P&�, 23"[0]�&P&1, T sup
| j | =m

&D j8&� . K (45)

6. EXAMPLES: FINITELY NON-UNIFORM C2

INTERPOLATING SCHEMES.

In Section 4, we have shown a construction of a C2 interpolating scheme
which coincides with a Box-Spline scheme S away from the origin.
However, as pointed out in the last paragraph of that section, this results
in a two-ring scheme. Using the sufficient condition given by Theorem 2, we
construct a one-ring finitely non-uniform interpolating scheme which is C2.

We seek the values of the weights that correspond to a stencil near the
origin, and set up the equations for them to satisfy the smoothness condi-
tions. Figure 2 depicts the stencil that is used to calculate S� P(1, 0). The
choice of coefficients is made such that three-directional symmetry is kept
(with respect to the directions (0, 1), (1, 0), (1, 1)). Our goal is to find
values of a, b, c, d, e that guarantee C2 limit surfaces.
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FIG. 2. A one-ring stencil.

The stencils for calculation of S� P at the points (1, 1), (0, 1), (&1, 0),
(&1, &1), (0, &1) are derived by requiring the finitely non-uniform
scheme to exhibit the same 3-directional symmetry as the original uniform
scheme. We already know that S reproduces the following homogeneous
polynomials in Z2: 1, x, y, x2&2xy, y2&2xy, therefore, we require that (a)
S� also reproduces these polynomials, and (b) all eigenvalues of the refine-
ment matrix MT , except those that correspond to reproduced polynomials,
have modulus less than 14.

Requirement (a) reduces to the following set of equations

a+2b+2c+d+e=1,

a&c=38, (46)

b&d=18.

Requirement (b) reduces to the inequalities

|a+2b+2c+d |<14,
(47)

|a&2b+2c&d |<14.

The general solution of (46)�(47) can be put in the form

a=:+;+14,

b=:&;+124,

c=:+;&18, (48)

d=:&;&112,

e=1&6:,
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FIG. 3. A stencil near interpolatory vertices of a regular triangulation.

with the necessary and sufficient condition for C2 smoothness:

|:|, |;|<124. (149)

Due to the three-directional symmetry, this scheme can be used near
regular vertices of a triangulation (i.e., vertices with valency 6). The stencil
with :=;=0 is depicted in Fig. 3.

We can use the two degrees of freedom :, ; to improve the shape of the
limit surfaces. It seems good practice to seek such values :, ; that minimize
a certain fairness measure of a limit surface of the subdivision process,
starting with certain initial control points. There are many possible choices
of fairness criteria and of the initial control points. We chose a fairness
measure that considers third order derivatives of the function

E( f )=| f 2
xxx+3f 2

xxy+3f 2
xyy+ f 2

yyy . (50)

Let

$' (+)={1,
0,

+=',
otherwise.

The only values of ' for which S� �$' depends on : and ; are first order
neighbors of the origin, and considering the three-directional symmetry, the
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FIG. 4. A stencil calculated by minimizing a fairness measure. The coefficients sum up to
4800.

only distinct values of E(S� �$') among those values of ', are the ones with
'=(0, 0), (1, 1), (1, 0).

Therefore, we focus on three sets of initial control points: $(0, 0) , $(1, 0) ,
$(1, 1) . We search for :, ; that minimize the quantity

E(S� �$(0, 0))+E(S� �$(1, 0))+E(S� �$(1, 1)). (51)

We use a finite difference approximation for E(S� �P), taken from the values
of S� 4P. Finally, we round the values of :, ; to rational numbers which are
useful for exact arithmetic. Figure 4 depicts the resulting stencil.

In a similar way, we construct a scheme that is suitable for subdivision
of quadrilateral meshes near a regular vertex (i.e., with valency 4). As the
scheme S away from the origin, we use the Catmull�Clark scheme, which

FIG. 5. Stencils for the modified Catmull�Clark scheme. A stencil for the edges emanating
from the interpolatory vertex, and a stencil for the faces that share the interpolatory vertex.
The interpolatory vertex is the vertex at the middle.
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generates the tensor product cubic B-splines. This time, two stencils need
to be calculated: One, for the edges emanating from the interpolatory ver-
tex, and the other, for the faces near the interpolatory vertex. This time, we
require our schemes to reproduce the polynomials 1, x, y, x2& y2, xy that
are reproduced by S. We use the remaining degrees of freedom to minimize
the fairness measure (6.6), and then round the results to rational numbers.
The resulting stencils are depicted in Fig. 5.

7. SUBDIVISION SCHEMES INTERPOLATING
NORMAL VECTORS

In this section, we use the notion of finitely non-uniform subdivision
schemes for interpolation of points with given normal vectors. We con-
struct subdivision schemes that are uniform away from the origin, whose
limit surfaces interpolate a given point, and have a prescribed normal
vector at the origin of the parametric domain.

The basic idea is demonstrated by the following example: Let S� and S� 0

denote two finitely non-uniform bivariate subdivision schemes that coincide
with a uniform subdivision scheme S away from the boundary. Assume
that both schemes generate C 1 limit functions, interpolating the control
point at the origin, and that S� 0 has the property mentioned in Corollary
4, namely that its limit functions have zero gradient at the origin. Given
three dimensional control points P=P0: Z2 � R3, we define a new finitely
non-uniform subdivision scheme by

Pn+1
1 =S� Pn

1 ,

Pn+1
2 =S� Pn

2 , (52)

Pn+1
3 =S� 0Pn

3 , n=0, 1, ...,

where Pn
i ( } ) denotes the i th component of the three dimensional vector

Pn ( } ). Note that S� 0 operates on the third coordinate of Pn while S� operates
on the first two coordinates. As a result, if the limit surface has a normal
vector at the origin, it must be exactly (0, 0, 1). In case a different normal
vector is given, we can rotate the given control points, and then follow the
same construction.

In the following, we extend the above construction for the s-dimensional
case. Our finitely non-uniform subdivision schemes operate on s+1 dimen-
sional control points P: Zs � Rs+1. We assume that we have two s-variate
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finitely non-uniform subdivision schemes S� and S� 0 that coincide away from
the origin, which are known to generate C1 limit functions that interpolate
the control point at the origin. Moreover we assume that S� 0 has the
property mentioned in Corollary 4, namely that its limit functions always
have zero gradient at the origin, and that S� satisfies the conditions in
Corollary 3.

Given a unit vector N # Rs+1, which stands for the prescribed normal at
the origin, the first stage in our construction consists of finding any
orthogonal (s+1)_(s+1) matrix Q with N as the last row. Then we
define a new s+1 dimensional subdivision scheme R by

S� 0 } } } 0 0

0 S� 0 0

R=Qt \ b . . . b + Q. (53)

0 0 S� 0

0 0 } } } 0 S� 0

In the above notation, S� and S� 0 are elements in a matrix of subdivision
operators. Thus the operation of the scheme R is represented by a
(s+1)_(s+1) matrix of subdivision operators, and it operates on (s+1)-
dimensional control points.

The geometric interpretation of R is the following: First we rotate the
control points, so that the vector N is mapped to the vector (0, 0, ..., 0, 1),
then we apply S� on every coordinate, except for the last one where S� 0 is
applied. Finally, we rotate the control points back to their original coor-
dinate system.

It is easy to see that R is interpolatory at the origin, since both S� and
S� 0 are interpolatory at the origin.

The regularity of the limit surfaces, for almost every set of initial control
points, follows from Corollary 3. It follows from the construction that the
last coordinate of any partial derivative of QR�P is zero at the origin,
therefore the partial derivatives of R�P at the origin are all perpendicular
to N. It is also simple to show that R is invariant to the specific choice of
Q and to inverting the sign of the vector N, since two (s+1)_(s+1)
orthogonal matrices Q1 , Q2 that share the same last row (up to a sign
change), satisfy the relation

Q2=\H
0

0
\1+ Q1 , (54)
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where H is an s_s orthogonal matrix. But

S� 0 } } } 0 0

0 S� 0 0

\H&1

0
0

\1+ \ b . . . b + \H
0

0
\1+

0 0 S� 0

0 0 } } } 0 S� 0

S� 0 } } } 0 0

0 S� 0 0

=\ b . . . b + .

0 0 S� 0

0 0 } } } 0 S� 0

Another important observation is the following: Since S� and S� 0 coincide
away from the origin with a subdivision scheme S, then R coincides away
from the origin with the diagonal subdivision scheme

S 0 } } } 0 0

0 S 0 0\ b . . . b+ ,

0 0 S 0

0 0 } } } 0 S

since QtIQ=I, where I is the (s+1)_(s+1) identity matrix. The impor-
tance of that observation, is that outside a finite neighborhood of the
origin, the subdivision schemes that we construct are invariant to the
choice of N. The effect of the special normal vector interpolation condition
therefore remains local.

It follows from our construction that the scheme R is invariant to
orthogonal transformations, in the following sense: If we transform the
initial control points P as well as the given normal vector N by left multi-
plication by an orthogonal (s+1)_(s+1) matrix A, and then calculate Q
and apply the scheme R, the resulting control points are the same as if we
first apply the scheme R, and then apply A.

One application of such schemes is to prescribe local and global minima
and maxima of the limit surface, with respect to a given direction. This
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leads to the following questions: How should we choose the scheme S0 in
order to prescribe local extremes of the limit surface? What are the condi-
tions on P that guarantee a local�global extremum? We will answer this
questions in the restricted case where the uniform scheme away from the
origin, S, has positive stencil coefficients (which is the case for B-spline and
box spline subdivision schemes, for example), which yields

8(x)�0, \x # Rs. (56)

An analysis of shape preserving properties of subdivision schemes with
positive coefficients is given in [10].

It is easy to see that the problem of prescribing an extremum of the limit
surface of R at the origin, with respect to a given direction, is equivalent
to the problem of requiring the limit function generated by S� 0 to have a
local�global minimum at the origin.

Let P: Zs � R denote initial scalar control points such that P(0)=0. We
seek conditions on S� 0 and on P, which guarantee that

S� �
0 P(x)�0, \x # Rs. (57)

We define S� 0 by

S� 0Q(:)={M0Q |T (:),
SQ(:),

: # T,
: � T,

\Q # l(Zs), (58)

and denote

P0=P, Pn+1=S� 0Pn, n>0. (59)

As shown in Section 5 there exists an open and bounded set 3/Rs that
contains the origin, with the property that

x # 2&n+13"2&n3 O S� �
0 Q(x)

= :
: # T"[0]

Qn (:) 8(2nx&:), \n�0, \Q # l(Zs), (60)

and

x # Rs"23 O S� �
0 Q(x)=S�Q(x). (61)

The following theorem provides a sufficient condition for the existence of
a global minimum of the limit function S� �

0 P at the origin.
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Theorem 6. Under (56), if P0
|Zs"[0]>0 and Pn

|T"[0]>0 for all n�0, then
S� �

0 P has a strict global minimum at the origin.

Proof. Since S� 0 is interpolatory at the origin we have that Pn (0)=0 for
all n�0, therefore S� �

0 P(0)=0. From (60) and (61) it follows that
S� �

0 P |Rs"[0]>0. K

The main condition of this theorem concerns the positivity of Pn
|T"[0] ,

which is non-trivial since the scheme S� 0 does not necessarily have positive
coefficients. However the analysis is simpler if we only want a local mini-
mum at the origin: Since Pn

|T=M n
0 P |T , as n tends to infinity the significant

part of the vectors Pn
|T consists of the eigenvectors of M0 that correspond

to the leading eigenvalues (excluding the eigenvalue 1). Therefore, a key
requirement in the construction of the scheme S� 0 , is the existence of a lead-
ing eigenvector that is strictly positive on T"[0]. This ensures the existence
of a subset L/l0 (T ), of positive measure such that S� �

0 P has a strict local
minimum at the origin whenever P |T # L.

In the following, we construct such a scheme S� 0 in the bivariate setting.
We seek a scheme that is suitable for triangular subdivision, and coincides
with Loop's scheme away from the origin. Taking the same steps as in
Section 6, we set up the following constraints on the stencil of S� 0 near the
origin:

1. The weights must sum up to 1.

2. The weight of the value at the origin should be 34.

3. The leading eigenvalue of the corresponding matrix M0 (excluding
the eigenvalue 1) should be 14.

FIG. 6. A stencil calculated by minimizing a fairness measure, with zero gradient at the
origin. The coefficients sum up to 4800.
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Conditions 1 and 2 guarantee that the sum of all the weights excluding the
weight at the origin, is 14, meaning that M0 has an eigenvector (corre-
sponding to the eigenvalue 14), which has the value 0 at the origin, and 1
at the points (1, 0), (1, 1), (0, 1), (&1, 0), (&1, &1), (0, &1). This suggests
the existence of a combinations of the leading eigenvectors that is strictly
positive on T"[0], which is important if we want to prescribe a local
extremum at the origin. Condition 3 suggests that according to Theorem 5,
S� 0 will generate limit functions that are C1 with bounded second
derivatives.

Under the above constraints, we minimize the fairness measure (51), and
once again, round the resulting weights to rational values. Figure 6 depicts
the resulting stencil for S� 0 .

Note that the weights in this stencil are positive, and therefore the
entire scheme S� 0 is a non-negative scheme. In particular, it follows that the
condition for a global minimum at the origin is very simple:

Lemma 7. Let S� 0 denote a finitely non-uniform interpolating scheme
which is convergent and non-negative. If P(:)>P(0) for all : # Zs"[0], then
S� �

0 P has a strict global minimum at the origin.

8. IMPLEMENTATION

In this section, we demonstrate surfaces generated by locally interpolat-
ing schemes, from initial triangular meshes.

In the first example, we prescribe a single point-interpolation conditions
and two normal-vector interpolation conditions. We use Loop's scheme
[8] away from the interpolation points, and near the interpolation points,
we use the stencils shown in Fig. 4. Near interpolation points where a nor-
mal vector is given, we use the stencils shown in Figs. 4 and 6, combined
as described in Section 7. Figure 7 shows the resulting surfaces.

In the second example, we prescribe two point-interpolation conditions
and a single normal-vector interpolation condition, and apply a similar
scheme. Figure 8 shows the resulting surfaces.

In the third example, we design surfaces that have a single smooth
boundary, and a prescribed extremum point, with a prescribed normal vec-
tor. We use Loop's scheme away from the extremum point, and away from
the boundary. Near the boundary we use the schemes developed in [7],
and near the extremum point, we use the stencils shown in Figs. 4 and 6,
combined as described in Section 7. Figure 9 shows the resulting surfaces.
The prescribed normal vector is shown by a black line segment.
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FIG. 7. Three iterations of a finitely-non uniform scheme. Prescribed normal vectors are
shown as black lines. The interpolation point is marked by a black bold point.

FIG. 8. Three iterations of a finitely-non uniform scheme. The prescribed normal vectors
is shown as a black line. The interpolation point are marked by black bold points.
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FIG. 9. Four limit surfaces with a constrained boundary and a prescribed normal vector
at a single point.
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